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The use of modern composite materials based on carbon fibers in precision equipment makes it pos-
sible to retain its dimensional stability under the conditions of a varied temperature field. The main
principle of development is the creation of a composite element of compensation for the thermal ex-
pansion of the structure.

At the present time, one of the incompletely resolved problems in creation of precision equipment is
the problem of retention of its dimensional stability under the conditions of a varied temperature field. The
action of a variable temperature field represents the greatest hazard to this equipment. This problem became
especially pressing in developing structures for communications systems for operation under terrestrial condi-
tions as well as in open outer space, where in large spaces even small deviations of the geometric parameters
of the structure can lead to substantial errors.

The use of different protections in the form of coatings, shieldings, and so on cannot completely ex-
clude the factor of disruption of the dimensional stability of a structure and only complicates and loads it.

These problems can be solved by two methods:
(1) the materials-science method — creation of a dimensionally stable structural material (SM);
(2) the designing method — creation of structures with the use of a functional composite material

preventing changes in their geometry.
Each of these methods has advantages and disadvantages. Solution of the problem by the materials-

science method is more universal, but it requires larger expenses and more time. What is more, it cannot be
applied to structures in which other structural materials must be used. Therefore, solution of the problem by
the designing method is preferred in the case of creation of more complex structures in which, because of
their features, it is impossible or almost impossible to use one structural material. This is true first of all for
systems of precision equipment, such as a telescope-type structure, which are used in outer space.

Different methods of mechanical compensation are insufficiently reliable, too complex, and have a
time factor, as, for example, a structure with a cooled jacket, which operates by the following scheme:
change in the body temperature — signal from the temperature-sensitive element — switching-on of the
pump — arrival of the coolant — cooling of the body to the required temperature — signal from the tem-
perature-sensitive element — shutting-off of the pump. Thermostabilization is even more problematic in the
case of an alternating-sign temperature field.

These problems can be solved with the use of functional composite materials, which, along with the
main properties inherent in structural materials, possess additional functions (synergism): for example, they
react inadequately to changes in the temperature field.

The main principle of development of such structural materials can be the use of the anomalous re-
action of individual fibers to a temperature change. The supermolecular structure of certain fiber anisotropic
fillers possessing, as a rule, an increased hardness due to the high orientation of the structural elements along
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the fiber is subjected to fixation (or thermofixation) in the process of production of the fillers for the required
orientation to be retained. If such fibers are acted upon by a temperature field, they relax and shrink along
their length, providing by doing so a negative coefficient of linear thermal expansion. Such changes are usu-
ally reversible in character, they are not always linear, and the value of the shrinkage frequently depends on
the conditions of the technology of production of the fibers.

In this respect, of greatest interest are carbon fibers (CFs) having, along with high specific physi-
comechanical characteristics, unique thermal properties that are determined by their structure, the character of
the surface, the temperature of heat treatment, etc. Among such properties is the coefficient of linear thermal
expansion (CLTE) of carbon fibers, which can take on not only positive values but negative values as well.
This is explained by the effect of reduction of linear and layered structures due to the formation of flexural
waves along with ordinary thermal vibrations.

Unlike ordinary homogeneous bodies, in which thermal expansion is practically linear, in carbon fi-
bers this process is complex, alternating-sign, and having extrema, and one can observe hysteresis at tempera-
tures approaching the final temperature of heat treatment. The negative value of the CLTE depends on the
heat-treatment temperature and increases with it. Therefore, the value of the shrinkage of the composite can
be changed in a fairly large range in one direction or another if the reinforcing carbon-fiber filler, the matrix
material, and the reinforcement scheme are chosen correctly.

But here the problem of determination of changes in the linear dimensions of carbon fibers in the
temperature interval of the supposed operation of the product arises. The reference literature gives an approxi-
mate interval of values of the CLTE for carbon fibers in the case of a temperature increase of one degree at
293 K. Such data cannot be used as a criterion for calculation. Moreover, standard dilatometers designed for
samples having a cross section of >1 mm cannot always be used in measurements of fiber materials.

The investigations of carbon fibers carried out using an optical comparator allowed us to obtain the
principal curve of change in their linear dimensions with temperature. However, such investigations have a
number of disadvantages, including the error introduced by optical devices, which is comparable to the value
of the CLTE (10−6). Therefore, for practical application we have developed the procedure of measuring the
CLTE of hard fibers (the Young modulus is no less than 100 GPa), which makes it possible to use a push-
type quartz dilatometer. The procedure is based on determination of the dilatometric curve of a bunch of
parallel-connected hard fibers to a temperature of 423 K.

Taking into account the foregoing, we can develop a structural element that, being included in a pre-
cision device, will stabilize its geometric dimensions. The functional composite element must have a CLTE
equal to that of the structure of the device but opposite in sign. The functional structural material will cancel
all the variations in the linear dimensions of the device structure in the required temperature interval, reliably

Fig. 1. Scheme of loading of a force shell (P = 58,860 Pa, M = 58,860
N⋅m).
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providing a high quality of its operation. The problem considered can be formulated as creation of such a
structure from a functional structural material, which would "reasonably" change its geometry by the same
value as the product in which it is included but opposite in sign and thus retain the dimensional stability of
the system as a whole.

In the technology proposed, the material of the structure used as the object for stabilization of geo-
metric parameters and acquisition of thermal-adaptation properties is of no importance.

The following main operations should be carried out in the process of development:
(1) analysis of the structure and changing its geometric parameters in the temperature range of operation;
(2) determination of the requirements of the absolute value of the shrinkage, the dimensions, and the

physicomechanical and weight characteristics as well as the synchronism of interaction imposed on the com-
posite compensative element;

(3) choice and analysis of the reinforcing and the matrix materials and calculation of the reinforce-
ment scheme;

(4) choice of the technology and the machining attachments.
By way of example we consider a carbon-plastic compensative element with a round cross section for

a telescope-type product with high physicomechanical characteristics. This is a structure in the form of a shell
shaped as a cylinder with a length of 878 mm and an inside diameter of 548 mm, which is equipped with
flanges at the ends of the cylinder for mechanical attachment. The total mass of the structure is no more than
22 kg. 

The structure developed must comply with the following requirements:
(1) to stand up to a multiple load of up to P = 58,860 Pa and M = 58,860 N⋅m (the distribution of

the limiting loads on the shell is shown in Fig. 1);
(2) to have a CLTE of 4.1⋅10−6 K−1 in the longitudinal direction and of no more than 8.4⋅10−6 K−1 in

the circular (transverse) direction in the temperature range 281–301 K;
(3) to possess resistance to special actions without a coating:
• tolerable mass loss in vacuum no more than 1%
• deposition of volatile substances no more than 0.1%
• absorption of moisture after a test no more than 0.2%
• protons 2⋅105 rad
• electrons 2.4⋅104 rad
• radiation 1.33⋅10−2 rad
• spectral range 1.2⋅1014–1.5⋅1015 Hz
• total energy 4.94⋅109 J.
Under the above-indicated conditions, the mechanical and thermal characteristics of the structure

without a coating must not change by more than 10% and the surface must be free of damage and flakings.
The technology of production of shells must provide recurrence of the properties of the product ma-

terial and stability of the structural parameters.
In order that the requirements imposed on the structure be observed, we have made mathematical

calculations modeling its behavior under the given conditions. As a result, we have obtained the physi-
comechanical characteristics of the product material: E1 = 126.6 GPa, E2 = 17.2 GPa, E3 = 166.8 GPa, F12

= 34.4 MPa, F3 = 686.7 MPa, and G12 = 36.3 MPa.
From the above-mentioned requirements imposed on the material and mass of the structure and an-

isotropy of its properties it has been inferred that the product can be manufactured from a composition rein-
forced with carbon fibers with an elastic modulus of no less than 200 GPa.

Since the CLTE of the structure is given with a high accuracy, we had to construct dilatometric
curves of the reinforcing filler to determine accurately the value of the linearity of the coefficient in the given
temperature range.
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To choose the reinforcing material by the procedure developed, we constructed dilatometric curves of
carbon fibers with an elastic modulus of no less than 200 GPa. As a result, we have chosen carbon fibers
having a linear dependence of the CLTE on the temperature in the longitudinal direction and a different de-
gree of heat treatment (final temperature of heat treatment) in the temperature range 275–325 K. We have
chosen "Kulon-P" reinforcing fibers with a CLTE of 2.7⋅10−6 K−1 for reinforcement of the shell and LU-P-0.1
with a CLTE of 1.1⋅10−6 K−1 for the flanges and frames.

Based on the operation requirements, we used the thermoreactive binder of an ENFB epoxy com-
pound (technical specifications 1-596-36-86) as the matrix material.

Thus, as a result of the analysis of the physicomechanical and thermophysical characteristics, we have
chosen the following materials for the structure: a high-modulus (Young modulus of up to 500 GPa) graphi-
tized "Kulon" strip in the longitudinal direction, a high-strength carbonized LU-P strip (Young modulus of up
to 250 GPa) in the transverse direction, and an ENFB epoxy-novolac binder as the matrix material.

It is known from the theory [1] that stiffened shells work well in axial compression. Therefore, the
calculation was made by the following algorithm.

Initial data:
(1) stiffness properties of a monolayer: E1 = 270 GPa, E2 = 5.5 GPa, ν12 = 0.3, and G12 = 2.9 GPa;
(2) ultimate strength in a single-axis stressed state, MPa: F1

+
 = 980, F1

−
 = 690, F2

+
 = 150, F2

−
 = 345,

and F12 = 30;
(3) thermomechanical characteristics of a monolayer, K−1: α1 = 2.1⋅10−6 and α2 = 15⋅10−6.
We used a classical approach to the calculation of stability, which implies that:
(a) the material of all the layers is linearly elastic;
(b) subcritical displacements and deformations are small as compared to bifurcational ones ("the body

is stressed but not deformed");
(c) the Kirchhoff–Love hypotheses are true (i.e., the straight-normal hypothesis and the nonpressed-

layer hypothesis);
(4) varied parameters for the shell: hi and ϕi, and for the layers of ribs: nx and ny; the geometry of

the cross section: hi and Bi.
The properties were calculated based on the continuous model, in which the layer of ribs is arbitrarily

considered as a homogeneous layer having reduced characteristics; account is taken of the discrete arrange-
ment of the ribs (local stability, strength).

The stiffness characteristics are as follows:
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For the axial ribs
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 (i) = ĝxx
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The local stability is
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By setting the determinant equal to zero we obtain a linear equation, from which we find Pj (m1m2).
The limiting load is
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1544



For the axial ribs, we substitute m2π ⁄ λy for m2
 ⁄ R into the formulas.

For the ring ribs, we substitute m2π ⁄ λx for m1π ⁄ L.
Since there are axial ribs, ξx is decreased as many times as N̂ is smaller than N (compressive force).
The thermoelastic characteristics are as follows:
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As a result of the calculations, we have developed the following structure. The compensative element
represents a shell of thickness 2 mm reinforced by sixteen longerons and two frames, positioned at a distance
of 290 mm from the edges of the shell. At the edges of the shell there are flanges with holes for mechanical
fastening to the main structure (Fig. 2). All the components of the structure are connected together rigidly.

We have chosen the following scheme of reinforcement:
Number of the layer     Grade of the material              Angle of reinforcement, deg
                           Shell and longerons: 
1–8                            "Kulon-P"                                   0
9–20                           "Kulon-P"                                 +35
21–32                          "Kulon-P"                                 –35
33–40                          "Kulon-P"                                   0
                           Flanges and frames:
1–20%                            LU-P                                  +45/–45
21–40&                           LU-P   
The prepreg technology (preliminary impregnation of the reinforcing material) has been chosen for

production of all the primary elements of the shell. Slopregs (stacks of prepregs) were built up according to
the required scheme of reinforcement with subsequent laying on the machining attachments (jigs).

The shell was produced by laying a slopreg on a cylindrical mandrel with subsequent autoclave com-
paction. Since the design of the shell had a stringent limitation on the tolerance for the inside diameter, which
excludes conicity, it was impossible to produce the shell on a solid mandrel with subsequent removal of the
product from the mandrel using a capstan. We have developed a demountable mandrel of the unloading type
(the pressure on the outer surface is equal to the pressure on the inner surface) to provide a high compaction
pressure without changing the mandrel geometry.

The slopreg was alternately butt-laid on the jig mandrel using a winding machine with rolling by a
pressing iron with a fluoroplastic roller and rotation of the mandrel by 30o after each layer of the slopreg.
The slab of the shell laid by this method was covered by a layer of T-10-80 glass cloth underwound by a
perforated fluoroplastic film and a layer of RVMN glass braid with a tension of 590 N.

The slabs for production of longerons were laid on the coating sheets by the same scheme of rein-
forcement.

The shell and the slab of the longerons were moulded on a "Scholz" autoclave in the regime of hard-
ening of the ENFB binder.

From the moulded shell we removed the layer of glass cloth, ground it by a diamond wheel with
underwinding, and faced to size. The quality of the shell was examined by an ultrasonic flaw detector. The
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longerons were cut from a slab to size on a miller. From the same slab we cut samples for conducting stand-
ard tests for verification of the required quality of the material.

The slabs of the flange and the elements of the frame were laid on the working surface of the matrix
of a mould. The lower and upper layers of E′2-62 glass cloth were laid; then, in accordance with the chosen
scheme of reinforcement, two-layer LU-P slopregs were butt-laid with displacement of the butts of each sub-
sequent layer by 50%. The stiffeners were formed by direct compaction of flat slabs with subsequent me-
chanical finishing.

The primary elements were attached to the shell by an epoxy binder with additional stiffering by
UKN carbon filament. The structure as a unit had a weight of 20.6 kg.

The diagram and the principle of operation of a compensative force element is shown schematically
in Fig. 3.

In the process of development of thermocompensative and dimensionally stable structures, we have
created an "Adapter" system for adaptation of precision structures.

The spread in the characteristics of the fibers, deviation of the reinforcement trajectories from the
calculated values, relaxation of the internal residual stresses, and macroinhomogeneities in the distribution of
the binder inevitably cause additional displacements of the structure, which can reach critical values. The
essence of the "Adapter" system is that a number of operations can be performed on the already produced
and measured structure. These operations make it possible to obtain a structure with thermal displacements of
any degree of smallness down to the resolving power of measuring devices.

The developments in question have secured a new direction in the last few years — they are related
to the first generation of "intellectual" structural materials (reacting to changes in the construction by chang-
ing their characteristics in the required direction), which provide the basis for materials of the new century.

NOTATION

P, limiting load; Pj, limiting load in the jth number of the fracture mechanism; M = T⋅d, bending
moment of the cylinder body; d, diameter of the shell; E1, elastic modulus along the fibers; E2, elastic modu-
lus across the fibers; E3, flexural elastic modulus; ν12, Poisson coefficient; G12, shear modulus; F1

+, ultimate

Fig. 2. Structure of a compensative shell.

Fig. 3. Schematic diagram of a compensative element.
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tensile strength along the fibers; F1
−
, ultimate compression strength of a monolayer along the fibers; F2

+, ulti-
mate tensile strength across the fibers; F2

−
, ultimate compression strength across the fibers; F12, shear strength;

F3, ultimate bending strength; α1, CLTE along the fibers; α2, CLTE across the fibers; hi, thickness of the
layer of the shell; ϕi, angle of reinforcement of the ith layer of the shell; nx and ny, number of layers of ribs
along the x and y axes, respectively; hi, height of a rib; Bi, width of a rib; Bxx, membrane stiffness; Dss,
flexural stiffness; gxx and gss, coefficients of the stiffness matrix of the layer written in the coordinates of the
structure; g11, g22, and g12, coefficients of the stiffness matrix along the axes of the stack; ĥi, reduced thick-
ness of the layer; Zi, coordinate of the layer; ĝ, conditional stiffness; EF, stiffness of a rib in axial compres-
sion; R, radius; h, thickness of the shell; L, length of the shell; σ(0), initial strength; ε(0), initial deformation;
γxy

(0), initial shear deformation; ξx and ξy, load parameter; σxy, shear strength; m1 and m2, number of half-waves
along the axis; C, membrane-flexural stiffnesses; β, thermal-stress coefficients; Lt, total length of the struc-
ture; L∗ , length of the compensative element included in the structure; λ, length of a rib; l, length of the
structural elements subjected to thermal elongation; ∆, thermal elongation of structural elements. Subscripts:
x, coordinate along the axis of the shell and the rib; y, coordinate in the circle of the shell and a rib; (i) i,
number of the layer; j, number of the fracture mechanism; ss, coefficient at the coefficient of flexural stiff-
ness along the axes of the structure; xx and yy, coefficients at the coefficient of membrane stiffness along the
axes of the structure; 11, along the axis of the stack; 22, across the axis of the stack; 12 and 21, shear in the
plane of the stack; (k), number of the calculation of the loading scheme.
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